2.34. При охолодженні води до $0^{\circ} \mathrm{C}$ виділиться кількість теплоти $Q_{1}=c m_{2}\left(t_{2}-t_{1}\right)$ або $Q_{1}=67200$ Дж. Визначимо, яку кількість льоду m_{3} можна розплавити за рахунок цієї кількості теплоти: $m_{3}=\frac{Q_{1}}{\lambda}$ або $m_{3} \approx 0,2$ кг. Оскільки $m_{3}<m_{1}$, значить, розплавився не весь лід й одержана суміш має температуру також $0^{\circ} \mathrm{C}$. Отже, в чашці буде 0,3 кг льоду і 0,4 кг води.
2.35. Знаючи ККД $\eta=\frac{P t}{q m}$, знайдемо масу спаленого палива $m=\frac{P t}{\eta q}$. Норма витрати палива на весь шлях $m_{0}^{\prime}=m_{0} \frac{s}{s_{0}}$. Тоді маса зекономлено-
го палива дорівнює:

$$
\Delta m=m_{0}^{\prime}-m=m_{0} \frac{s}{s_{0}}-\frac{P t}{\eta q}, \text { або } \Delta m=9,6 \text { кг. }
$$

2.36. Якщо q - кількість теплоти, яка відводиться від води за одиницю часу, то $\tau_{1}=\frac{Q}{q}=\frac{\lambda \tau}{c\left(t-t_{0}\right)}$ або $\tau_{1}=79$ хв, де $Q=\lambda m-$ кількість теплоти, яку необхідно відняти від води при температурі $t_{0}=0^{\circ} \mathrm{C}$, щоб перетворити її в лід при тій самій температурі, m - маса води, λ - питома теплоємність води.
2.37. Для того щоб дробинка почала тонути, немає необхідності в тому, щоб розтанув весь лід. Достатньо того, щоб середня густина льоду з шротинкою стала рівною густині води. Якщо масу льоду, що залишився, позначити через M_{1}, то умова того, що шротинка почне тонути, запишеться так: $\frac{M_{1}+m}{V_{1}}=\rho_{\text {в }}$. Але об'єм V_{1} льоду і шротинки дорівнює сумі їхніх об'ємів: $V_{1}=\frac{M_{1}}{\rho_{\text {л }}}+\frac{m}{\rho_{\text {с }}}$. Тому $M_{1}+m=\rho_{\text {в }}\left(\frac{M_{1}}{\rho_{\text {л }}}+\frac{m}{\rho_{\text {с }}}\right)$. Звідси $M_{1}=m \frac{\left(\rho_{\text {с }}-\rho_{\text {в }}\right) \rho_{\text {л }}}{\left(\rho_{\text {в }}-\rho_{\text {л }}\right) \rho_{\text {с }}}$ або $M_{1}=41$ г. Розтанути повинна маса льоду: $\Delta M=M-M_{1}$ або $\Delta M=59$ г. Для цього необхідна кількість теплоти $Q=\lambda \Delta M$, або $Q=19,7$ Дж.
2.38. Вся дротина має опір $R=n r$, де r - опір кожної з n рівних частин дротини. При паралельному з'єднанні n однакових провідників загальний опір складатиме: $R_{0}=\frac{r}{n}$. Виключаючи r, дістанемо $\frac{R}{R_{0}}=n^{2}, n$ може бути лише цілим додатним числом, більшим за одиницю. Тому розв'язки можливі лише у випадках, коли $\frac{R}{R_{0}}=4,9,16,25,36, \ldots$ У нашому випадку $n=\sqrt{\frac{R}{R_{0}}}=\sqrt{\frac{100}{1}}=10$.
2.39. Опір трьох однакових послідовно з'єднаних резисторів втричі більший за опір одного резистора, тобто $R_{1}=3 R$. Звідси опір одного резистора дорівнює 3 Ом. Опір трьох однакових паралельно з'єднаних резисторів втричі менший за опір одного резистора, тобто дорівнює 1 Ом.
2.40. Опір паралельно з'єднаних резисторів $\frac{R_{1} R_{2}}{R_{1}+R_{2}}=15$ (Ом). Загальний
$R_{1} R_{2}$ опір кола $R=\frac{R_{1} R_{2}}{R_{1}+R_{2}}+R_{3}=50$ (Ом). Тоді сила струму в нерозгалуженій частині кола (і в третьому резисторі) $I_{3}=\frac{U}{R}=2,4$ (А). Сума сил струмів у першому і другому резисторах дорівнює силі струму I_{3}, а відношення сил струмів I_{1} і I_{2} обернено пропорційне опорам резисторів, тобто

$$
I_{1}+I_{2}=I_{3} \text { i } I_{1}: I_{2}=\frac{1}{R_{1}}: \frac{1}{R_{2}}
$$

З цих двох рівнянь знайдемо $I_{1}=1,8$ А і $I_{2}=0,6$ А.
2.41. Напруга на першому резисторі U_{1}. По цьому резистору йде струм силою $I_{1}=\frac{U_{1}}{R_{1}}=8,7$ (А). Напруга на другому резисторі $U-U_{1}$ і по ньому йде струм силою $I_{2}=\frac{U-U_{1}}{R_{2}} \approx 10,87$ (А). Через вольтметр йде струм силою $I_{\mathrm{B}}=I_{2}-I_{1} \approx 2,17$ (А). Тоді шукане відношення: $\frac{I_{\mathrm{B}}}{I_{2}} \approx 0,2$.
2.42. Очевидно, що послідовне чи паралельне з'єднання всіх резисторів не дозволить одержати необхідний опір. Шукана схема має бути змішаним з'єднанням резисторів. При пошуку схеми доцільно керуватися правилом: при паралельному з'єднанні двох резисторів загальний опір менший за найменший з опорів, при послідовному - більший за найбільший. Очевидно, резистор з опором 100 кОм треба з'єднати паралельно з одним з двох інших резисторів. Заданий опір 70 кОм досягається, коли паралельно з'єднати резистори з опорами 100 і 25 кОм і послідовно до них приєднати резистор з опором 50 кОм.
2.43. Опір трьох паралельно з'єднаних резисторів знайдемо за формулою

$$
\begin{gathered}
\frac{1}{R_{2}}+\frac{1}{R_{x}}+\frac{1}{R_{3}}, \text { звідки } R_{2}=\frac{R_{2} R_{3} R_{x}}{R_{3} R_{x}+R_{2} R_{3}+R_{2} R_{x}} . \text { Опір всього кола } \\
R=\frac{R_{2} R_{3} R_{x}}{R_{3} R_{x}+R_{2} R_{3}+R_{2} R_{x}}+R_{1}+R_{4} \\
\text { звідки } R_{x}=\frac{R_{2} R_{3}\left(R-R_{1}-R_{4}\right)}{R_{2} R_{3}-\left(R_{2}+R_{3}\right)\left(R-R_{1}+R_{4}\right)}=20 \text { (Ом). }
\end{gathered}
$$

2.44. У лівому і правому резисторах (на рисунку вони розміщені вертикально) струми однакової сили повинні йти назустріч одне одному. Це означає,

що струми в цих резисторах відсутні. Ці резистори не впливають на загальний опір кола, i їх можна вимкнути. Еквівалентне коло складатиметься з паралельно з'єднаних двох резисторів, і його опір дорівнюватиме $\frac{1}{2} r$.
2.45. Треба з'єднати три провідники на першому поверсі разом, на другому поверсі ідентифікувати четвертий провідник (дві операції). Потім з'єднати з ним один з трьох провідників, що залишилися, і замкнути два провідники, які залишилися. На першому поверсі ідентифікувати другий провідник (дві операції). Нарешті, з'єднати один з провідників, що залишився, з одним з ідентифікованих. На другому поверсі визначити, які з кінців належать провідникам, що залишилися (одна операція). Всього необхідно п'ять операцій.
2.46. Схеми електропроводки, які дають можливість вмикати і вимикати лампочку в будь-якому кінці коридору, показані на рис. 270. Біля кінців коридору встановлюються два перемикачі Π_{1} і Π_{2}, кожен з яких має два положення. Залежно від положення виводів від мережі варіант а чи б може виявитися вигіднішим з точки зору економії провідників.
2.47. Не існує, оскільки вольтметр V_{3} вимірює частину спаду напруги на опорі R_{3}. При переміщенні повзунка резистора R_{3} показання вольтметрів V, V_{1} і V_{2} змінюватися не будуть, якщо опір вольтметра V_{3} вважати нескінченно великим. Показання вольтметра V_{3} буде збільшуватися при русі повзунка вправо.
2.48. Під час руху повзунка вправо сила струму в колі зростає, оскільки зовнішній опір зменшується. Це призводить до зменшення показань вольтметра V_{1} і до зростання показань V_{2} (оскільки $V_{2}=I R$).
2.49. Незалежно від значення опору амперметр показує силу струму в даному колі. Але якщо вимкнути з кола амперметр з великим опором, то сила струму в колі істотно зміниться. Ось чому опір амперметра має бути невеликим.
2.50. Опір між точкою A і точкою 1 дорівнює r. Таким самим він буде і між точками A і 2 іт. д., оскільки верхня складова частина паралельного з'єднання збільшується від точки до точки на один і той самий опір, що дорівнює r. Тобто опір кола між точками A і B становить r.
2.51. Потужніша лампа має менший опір $\left(R_{2}=\frac{U^{2}}{P_{2}}\right)$, а сила струму, що проходить через лампи, однакова. Із закону Джоуля-Ленца випливає: $P_{1}^{\prime}=I^{2} R_{1}$, $P_{2}^{\prime}=I^{2} R_{2}$. Тому менш потужна лампа горітиме яскравіше.
2.52. Розділимо кулю на шари однакової товщини перпендикулярно до діаметра, в кінцях якого приєднані провідники. Через всі шари йде струм однієї й тієї самої сили, а опір шару обернено пропорційний його площі. Тому більше теплоти виділяється в шарах з меншою площею, тобто біля полюсів.
2.53. Сумарний опір паралельно з'єднаних лампочок вдвічі менший за опір однієї лампочки. Тому в перший момент після вмикання напруга на паралельно з'єднаних лампочках буде $U_{1}=U_{2}=40 \mathrm{~B}$, а на третій лампочці $U_{3}=80$ В. Оскільки потужність пропорційна квадрату напруги $P=\frac{U^{2}}{R}$, то при однаковому опорі лампочок в третій лампочці виділяється в чотири рази більша потужність. З нагріванням лампочок U_{3} зростає, відповідно U_{1} та U_{2} - зменшуються.
2.54. а) Можна, оскільки напруга розподілиться порівну між лампами і вони горітимуть в нормальному режимі; б) не можна, оскільки лампа більшої потужності має менший опір і на ній напруга буде менша за 110 В. На лампі меншої потужності напруга перевищує 110 В і вона може перегоріти.
2.55. Схеми вмикання спіралей показані на рис.271. Кількості теплоти, одержані від плитки за одиницю часу, дорівнюватимуть $Q_{\mathrm{a}}=\frac{U^{2}}{2 R} ; Q_{\bar{б}}=\frac{U^{2}}{R}$ i $Q_{\mathrm{B}}=\frac{U^{2}}{\frac{1}{2} R}$, тобто $Q_{\mathrm{a}}: Q_{\bar{б}}: Q_{\mathrm{B}}=1: 2: 4$.
a)

б)

Puc. 270

Puc. 271
2.56. Нагрівачі однакової потужності треба з'єднати між собою паралельно і до них послідовно приєднати нагрівач потужністю P_{3}. Опір нагрівачів потужністю P_{1} і P_{2} буде таким: $R_{1}=R_{2}=\frac{U_{1}^{2}}{P_{1}}=\frac{U_{1}^{2}}{P_{2}}$. Опір паралельного з'єднання буде $R_{n}=\frac{1}{2} R_{1}=\frac{U_{1}^{2}}{2 P_{1}}$. Опір третього нагрівача $R_{3}=\frac{U_{1}^{2}}{P_{3}}$. Оскільки $P_{3}=2 P_{1}$, то $R_{3}=\frac{U_{1}^{2}}{2 P_{1}}$, тобто такий самий, як і паралельного з'єднання. Тоді загальний опір кола буде: $2 R_{3}=\frac{U_{1}^{2}}{P_{1}}$. Сила струму в нерозгалуженій частині кола (в нагрівачі потужністю P_{3}) дорівнюватиме $I_{3}=\frac{U_{2}}{2 R_{3}}=\frac{U_{2}}{2 U_{1}^{2}} P_{1}$, або $I_{3} \approx 9,1$ А. Сила струму в нагрівачах потужністю P_{1} і P_{2} буде вдвічі меншою, тобто $I_{1}=I_{2} \approx 4,55 \mathrm{~A}$.
2.57. Опір паралельного з'єднання трьох резисторів дорівнює $\frac{1}{3} r$. При послідовному з'єднанні резисторів сила струму в них однакова, а кількість теплоти виділяється пропорційно опору резисторів, тобто $Q_{1}=I^{2} \frac{1}{3} r t$ і $Q_{2}=I^{2} R t$. Звідси $\frac{Q_{1}}{Q_{2}}=\frac{r}{3 R}$.
2.58. При послідовному з'єднанні однакових нагрівачів на них виділяється потужність $P_{1}=\frac{U^{2}}{2 R}$. При паралельному з'єднані нагрівачів й увімкненні їх у мережу з якоюсь напругою U_{x} на них виділяється потужність $P_{2}=\frac{U_{x}^{2}}{\frac{1}{2} R}$. За умови задачі $P_{1}=P_{2}$ або $\frac{U^{2}}{2 R}=\frac{U_{x}^{2}}{\frac{1}{2} R}$, звідки $U_{x}=\frac{1}{2} U$ або $U_{x}=110$ В.
2.59. Для того, щоб лампочку можна було увімкнути в мережу з напругою U_{2}, спад напруги на додатковому опорі повинен дорівнювати $U_{\text {д }}=U_{2}-U_{1}$. Згідно із законом Ома, $U_{\text {д }}=I R_{\text {д }}$. Сила струму через додатковий опір дорівнює силі струму через лампочку $I=\frac{P}{U_{1}}$. Таким чином, $U_{\text {д }}=\frac{P R_{\text {д }}}{U_{1}}$, звідки $\quad U_{1}\left(U_{2}-U_{1}\right)$ $R_{\text {д }}=\frac{U_{1} U_{\text {д }}}{P}=\frac{U_{1}\left(U_{2}-U_{1}\right)}{P}$. Оскільки $R_{\text {д }}=\rho \frac{L}{S}, S$ і l - перерізі довжина провідника, дістанемо $l=\frac{U_{1} U_{\text {д }} S}{\rho P}=\frac{U_{1}\left(U_{2}-U_{1}\right) S}{\rho P}$.
2.60. При вмиканні електронагрівальних приладів Π_{1} і Π_{2}, які споживають струм великої сили, зростає спад напруги в мережі і розжарення лампочок зменшується. При цьому вплив вмикання електронагрівального приладу Π_{2}, особливо на розжарення лампочки Π_{2}, сильніший, ніж вмикання Π_{1}, оскільки вмикання Π_{2} викликає спад напруги в проводах, які йдуть по квартирі, переріз яких менший, отже, опір більший, ніж у проводів, які підводять струм до квартири.
2.61. При замиканні ключа K, тобто при вмиканні лампочки $Л_{3}$, опір ділянки $A B$ зменшується, а отже, зменшується спад напруги на цій ділянці. Тому сила струму в лампочці $Л_{2}$ зменшується, а в лампочці J_{1} зростає.
2.62. Спосіб переробки плитки очевидний з рис. 272.
2.63. В першому випадку струм через лампочку 2 починає йти після того, як нитка лампи 1 розжарилась, внаслідок чого її опір став значним. У другому ж випадку струм через лампочку 2 починає йти відразу після вмикання в мережу, тобто коли нитка лампи 1 ще не нагрілася та її опір малий. Тому лампочка 2 перегоряє.
2.64. Для нагрівання води до кипіння треба затратити кількість теплоти $Q_{1}=c m\left(100^{\circ}-t\right)$. Виготовлений кип'ятильник за час τ виділить теплоту $Q_{2}=\frac{U^{2}}{R} \tau$, однак на нагрівання води йде лише кількість теплоти ηQ_{2}. R
$\begin{gathered}\text { Прирівняємо ці кількості теплоти } Q_{1}=\eta Q_{2} \text {, або } c m\left(100^{\circ}-t\right)=\eta \frac{\pi U^{2} D^{2} \tau}{4 \rho l} \text {, } \\ \pi \eta U^{2} D^{2} \tau\end{gathered}, ~$ звідки $l=\frac{\pi \eta U^{2} D^{2} \tau}{4 c m 100^{\circ}-t}$.

