- **2.34.** При охолодженні води до $0\,^{\circ}\mathrm{C}$ виділиться кількість теплоти $Q_1 = c\,m_2\,(t_2-t_1)\,$ або $Q_1 = 67\,200\,$ Дж. Визначимо, яку кількість льоду $m_3\,$ можна розплавити за рахунок цієї кількості теплоти: $m_3 = \frac{Q_1}{\lambda}\,$ або $m_3 \approx 0.2\,$ кг. Оскільки $m_3 < m_1\,$, значить, розплавився не весь лід й одержана суміш має температуру також $0\,^{\circ}\mathrm{C}\,$. Отже, в чашці буде $0.3\,$ кг льоду і $0.4\,$ кг води.
- **2.35.** Знаючи ККД $\eta = \frac{Pt}{qm}$, знайдемо масу спаленого палива $m = \frac{Pt}{\eta q}$. Норма витрати палива на весь шлях $m_0' = m_0 \frac{s}{s_0}$. Тоді маса зекономленого палива дорівнює:

$$\Delta m=m_0'-m=m_0rac{s}{s_0}-rac{Pt}{\eta q}$$
 , або $\Delta m=9$,6 кг.

- **2.36.** Якщо q кількість теплоти, яка відводиться від води за одиницю часу, то $\tau_1 = \frac{Q}{q} = \frac{\lambda \tau}{c(t-t_0)}$ або $\tau_1 = 79$ хв, де $Q = \lambda m$ кількість теплоти, яку необхідно відняти від води при температурі $t_0 = 0$ °C , щоб перетворити її в лід при тій самій температурі, m маса води, λ питома теплоємність води.
- **2.37.** Для того щоб дробинка почала тонути, немає необхідності в тому, щоб розтанув весь лід. Достатньо того, щоб середня густина льоду з шротинкою стала рівною густині води. Якщо масу льоду, що залишився, позначити через M_1 , то умова того, що шротинка почне тонути, запишеться так: $\frac{M_1+m}{V_1}=\rho_{_{\rm B}}\text{. Але об'єм }V_1\text{ льоду і шротинки дорівнює сумі їхніх об'ємів:}$ $V_1=\frac{M_1}{\rho_{_{\rm A}}}+\frac{m}{\rho_{_{\rm C}}}\text{. Тому }M_1+m=\rho_{_{\rm B}}\bigg(\frac{M_1}{\rho_{_{\rm A}}}+\frac{m}{\rho_{_{\rm C}}}\bigg)\text{. Звідси }M_1=m\frac{\left(\rho_{_{\rm C}}-\rho_{_{\rm B}}\right)\rho_{_{\rm A}}}{\left(\rho_{_{\rm B}}-\rho_{_{\rm A}}\right)\rho_{_{\rm C}}}$ або $M_1=41$ г. Розтанути повинна маса льоду: $\Delta M=M-M_1$ або $\Delta M=59$ г. Для цього необхідна кількість теплоти $Q=\lambda\Delta M$, або Q=19,7 Дж.
- **2.38.** Вся дротина має опір R=nr , де r опір кожної з n рівних частин дротини. При паралельному з'єднанні n однакових провідників загальний опір складатиме: $R_0=\frac{r}{n}$. Виключаючи r , дістанемо $\frac{R}{R_0}=n^2$, n може бути лише цілим додатним числом, більшим за одиницю. Тому розв'язки можливі лише у випадках, коли $\frac{R}{R_0}=4$, 9, 16, 25, 36,... У нашому випадку $n=\sqrt{\frac{R}{R_0}}=\sqrt{\frac{100}{1}}=10$.

- **2.39.** Опір трьох однакових послідовно з'єднаних резисторів втричі більший за опір одного резистора, тобто $R_1 = 3R$. Звідси опір одного резистора дорівнює 3 Ом. Опір трьох однакових паралельно з'єднаних резисторів втричі менший за опір одного резистора, тобто дорівнює 1 Ом.
- **2.40.** Опір паралельно з'єднаних резисторів $\frac{R_1R_2}{R_1+R_2}$ = 15 (Ом). Загальний опір кола $R=\frac{R_1R_2}{R_1+R_2}+R_3$ = 50 (Ом). Тоді сила струму в нерозгалуженій частині кола (і в третьому резисторі) $I_3=\frac{U}{R}$ = 2,4 (А). Сума сил струмів у першому і другому резисторах дорівнює силі струму I_3 , а відношення сил струмів I_1 і I_2 обернено пропорційне опорам резисторів, тобто

$$I_1 + I_2 = I_3$$
 i $I_1 : I_2 = \frac{1}{R_1} : \frac{1}{R_2}$.

З цих двох рівнянь знайдемо $I_1 = 1,8\,$ A і $I_2 = 0,6\,$ A.

- **2.41.** Напруга на першому резисторі U_1 . По цьому резистору йде струм силою $I_1=\frac{U_1}{R_1}=8,7$ (A). Напруга на другому резисторі $U-U_1$ і по ньому йде струм силою $I_2=\frac{U-U_1}{R_2}\approx 10,87$ (A). Через вольтметр йде струм силою $I_{\rm B}=I_2-I_1\approx 2,17$ (A). Тоді шукане відношення: $\frac{I_{\rm B}}{I_2}\approx 0,2$.
- **2.42.** Очевидно, що послідовне чи паралельне з'єднання всіх резисторів не дозволить одержати необхідний опір. Шукана схема має бути змішаним з'єднанням резисторів. При пошуку схеми доцільно керуватися правилом: при паралельному з'єднанні двох резисторів загальний опір менший за найменший з опорів, при послідовному більший за найбільший. Очевидно, резистор з опором 100 кОм треба з'єднати паралельно з одним з двох інших резисторів. Заданий опір 70 кОм досягається, коли паралельно з'єднати резистори з опорами 100 і 25 кОм і послідовно до них приєднати резистор з опором 50 кОм.
- 2.43. Опір трьох паралельно з'єднаних резисторів знайдемо за формулою

$$\frac{1}{R_2} + \frac{1}{R_x} + \frac{1}{R_3} \text{ , звідки } R_2 = \frac{R_2 R_3 R_x}{R_3 R_x + R_2 R_3 + R_2 R_x} \text{ . Опір всього кола}$$

$$R = \frac{R_2 R_3 R_x}{R_3 R_x + R_2 R_3 + R_2 R_x} + R_1 + R_4 \text{ ,}$$
 звідки
$$R_x = \frac{R_2 R_3 \left(R - R_1 - R_4\right)}{R_2 R_3 - \left(R_2 + R_3\right) \left(R - R_1 + R_4\right)} = 20 \text{ (Ом)}.$$

2.44. У лівому і правому резисторах (на рисунку вони розміщені вертикально) струми однакової сили повинні йти назустріч одне одному. Це означає,

що струми в цих резисторах відсутні. Ці резистори не впливають на загальний опір кола, і їх можна вимкнути. Еквівалентне коло складатиметься з па-

ралельно з'єднаних двох резисторів, і його опір дорівнюватиме $\frac{1}{2}r$.

- **2.45.** Треба з'єднати три провідники на першому поверсі разом, на другому поверсі ідентифікувати четвертий провідник (дві операції). Потім з'єднати з ним один з трьох провідників, що залишилися, і замкнути два провідники, які залишилися. На першому поверсі ідентифікувати другий провідник (дві операції). Нарешті, з'єднати один з провідників, що залишився, з одним з ідентифікованих. На другому поверсі визначити, які з кінців належать провідникам, що залишилися (одна операція). Всього необхідно п'ять операцій.
- **2.46.** Схеми електропроводки, які дають можливість вмикати і вимикати лампочку в будь-якому кінці коридору, показані на $puc.\ 270$. Біля кінців коридору встановлюються два перемикачі Π_1 і Π_2 , кожен з яких має два положення. Залежно від положення виводів від мережі варіант а чи б може виявитися вигіднішим з точки зору економії провідників.
- **2.47.** Не існує, оскільки вольтметр V_3 вимірює частину спаду напруги на опорі R_3 . При переміщенні повзунка резистора R_3 показання вольтметрів V, V_1 і V_2 змінюватися не будуть, якщо опір вольтметра V_3 вважати нескінченно великим. Показання вольтметра V_3 буде збільшуватися при русі повзунка вправо.
- **2.48.** Під час руху повзунка вправо сила струму в колі зростає, оскільки зовнішній опір зменшується. Це призводить до зменшення показань вольтметра V_1 і до зростання показань V_2 (оскільки $V_2 = IR$).
- **2.49.** Незалежно від значення опору амперметр показує силу струму в даному колі. Але якщо вимкнути з кола амперметр з великим опором, то сила струму в колі істотно зміниться. Ось чому опір амперметра має бути невеликим.
- **2.50.** Опір між точкою A і точкою 1 дорівнює r. Таким самим він буде і між точками A і 2 і т. д., оскільки верхня складова частина паралельного з'єднання збільшується від точки до точки на один і той самий опір, що дорівнює r. Тобто опір кола між точками A і B становить r.
- **2.51.** Потужніша лампа має менший опір $\left(R_2 = \frac{U^2}{P_2}\right)$, а сила струму, що проходить через лампи, однакова. Із закону Джоуля—Ленца випливає: $P_1^{'} = I^2 R_1$, $P_2^{'} = I^2 R_2$. Тому менш потужна лампа горітиме яскравіше.
- **2.52.** Розділимо кулю на шари однакової товщини перпендикулярно до діаметра, в кінцях якого приєднані провідники. Через всі шари йде струм однієї й тієї самої сили, а опір шару обернено пропорційний його площі. Тому більше теплоти виділяється в шарах з меншою площею, тобто біля полюсів.

- **2.53.** Сумарний опір паралельно з'єднаних лампочок вдвічі менший за опір однієї лампочки. Тому в перший момент після вмикання напруга на паралельно з'єднаних лампочках буде $U_1 = U_2 = 40\,$ В, а на третій лампочці
- $U_3 = 80\,$ В. Оскільки потужність пропорційна квадрату напруги $P = \frac{U^2}{R}$, то при однаковому опорі лампочок в третій лампочці виділяється в чотири рази більша потужність. З нагріванням лампочок U_3 зростає, відповідно U_1 та U_2 зменшуються.
- **2.54.** а) Можна, оскільки напруга розподілиться порівну між лампами і вони горітимуть в нормальному режимі; б) не можна, оскільки лампа більшої потужності має менший опір і на ній напруга буде менша за 110 В. На лампі меншої потужності напруга перевищує 110 В і вона може перегоріти.
- **2.55.** Схеми вмикання спіралей показані на $puc.\,271$. Кількості теплоти, одержані від плитки за одиницю часу, дорівнюватимуть $Q_{\rm a}=\frac{U^2}{2R}$; $Q_{\rm b}=\frac{U^2}{R}$ і $Q_{\rm b}=\frac{U^2}{2R}$, тобто $Q_{\rm a}:Q_{\rm b}:Q_{\rm b}=1:2:4$.

2.56. Нагрівачі однакової потужності треба з'єднати між собою паралельно і до них послідовно приєднати нагрівач потужністю P_3 . Опір нагрівачів потужністю P_1 і P_2 буде таким: $R_1=R_2=\frac{U_1^2}{P_1}=\frac{U_1^2}{P_2}$. Опір паралельного з'єднання буде $R_n=\frac{1}{2}R_1=\frac{U_1^2}{2P_1}$. Опір третього нагрівача $R_3=\frac{U_1^2}{P_3}$. Оскільки $P_3=2P_1$, то $R_3=\frac{U_1^2}{2P_1}$, тобто такий самий, як і паралельного з'єднання. Тоді загальний опір кола буде: $2R_3=\frac{U_1^2}{P_1}$. Сила струму в нерозгалуженій частині кола (в нагрівачі потужністю P_3) дорівнюватиме $I_3=\frac{U_2}{2R_3}=\frac{U_2}{2U_1^2}P_1$, або $I_3\approx 9,1$ А. Сила струму в нагрівачах потужністю P_1 і P_2 буде вдвічі меншою, тобто $I_1=I_2\approx 4,55$ А.

- **2.57.** Опір паралельного з'єднання трьох резисторів дорівнює $\frac{1}{3}r$. При послідовному з'єднанні резисторів сила струму в них однакова, а кількість теплоти виділяється пропорційно опору резисторів, тобто $Q_1 = I^2 \frac{1}{3}rt$ і $Q_2 = I^2Rt$. Звідси $\frac{Q_1}{Q_2} = \frac{r}{3R}$.
- **2.58.** При послідовному з'єднанні однакових нагрівачів на них виділяється потужність $P_1=\frac{U^2}{2R}$. При паралельному з'єднані нагрівачів й увімкненні їх у мережу з якоюсь напругою U_x на них виділяється потужність $P_2=\frac{U_x^2}{\frac{1}{2}R}$. За умови задачі $P_1=P_2$ або $\frac{U^2}{2R}=\frac{U_x^2}{\frac{1}{2}R}$, звідки $U_x=\frac{1}{2}U$ або $U_x=110~{\rm B.}$
- **2.59.** Для того, щоб лампочку можна було увімкнути в мережу з напругою U_2 , спад напруги на додатковому опорі повинен дорівнювати $U_{_{\rm I}}=U_2-U_1$. Згідно із законом Ома, $U_{_{\rm I}}=IR_{_{\rm I}}$. Сила струму через додатковий опір дорівнює силі струму через лампочку $I=\frac{P}{U_1}$. Таким чином, $U_{_{\rm I}}=\frac{PR_{_{\rm I}}}{U_1}$, звідки $R_{_{\rm I}}=\frac{U_1U_{_{\rm I}}}{P}=\frac{U_1(U_2-U_1)}{P}$. Оскільки $R_{_{\rm I}}=\rho\frac{L}{S}$, S і l переріз і довжина провідника, дістанемо $l=\frac{U_1U_{_{\rm I}}S}{\rho P}=\frac{U_1(U_2-U_1)S}{\rho P}$.
- **2.60.** При вмиканні електронагрівальних приладів Π_1 і Π_2 , які споживають струм великої сили, зростає спад напруги в мережі і розжарення лампочок зменшується. При цьому вплив вмикання електронагрівального приладу Π_2 , особливо на розжарення лампочки Π_2 , сильніший, ніж вмикання Π_1 , оскільки вмикання Π_2 викликає спад напруги в проводах, які йдуть по квартирі, переріз яких менший, отже, опір більший, ніж у проводів, які підводять струм до квартири.
- **2.61.** При замиканні ключа K , тобто при вмиканні лампочки Π_3 , опір ділянки AB зменшується, а отже, зменшується спад напруги на цій ділянці. Тому сила струму в лампочці Π_2 зменшується, а в лампочці Π_1 зростає.
- **2.62.** Спосіб переробки плитки очевидний з рис. 272.
- **2.63.** В першому випадку струм через лампочку 2 починає йти після того, як нитка лампи 1 розжарилась, внаслідок чого її опір став значним. У другому ж випадку струм через лампочку 2 починає йти відразу після вмикання в мережу, тобто коли нитка лампи 1 ще не нагрілася та її опір малий. Тому лампочка 2 перегоряє.

2.64. Для нагрівання води до кипіння треба затратити кількість теплоти $Q_1 = cm(100^\circ - t)$. Виготовлений кип'ятильник за час τ виділить теплоту $Q_2 = \frac{U^2}{R} \tau$, однак на нагрівання води йде лише кількість теплоти ηQ_2 . Прирівняємо ці кількості теплоти $Q_1 = \eta Q_2$, або $cm(100^\circ - t) = \eta \frac{\pi U^2 D^2 \tau}{4\rho l}$, звідки $l = \frac{\pi \eta U^2 D^2 \tau}{4c \ m \ 100^\circ - t}$.