2.156. Газ переведено із стану 1 в стан 2 . Залежність його тиску від абсолютної температури показано на рис. 62. Збільшився чи зменшився об'єм газу? Масу газу вважати постійною.
2.157. Молекулярний пучок падає на стінку і відбивається від неї за законом пружного удару. Визначити тиск p, з яким молекулярний пучок тисне на стінку, якщо вектор швидкості молекул \vec{v} утворює кут φ з нормаллю до стінки. Маса кожної молекули m, а їхнє число в одиниці об’єму n. Розглянути випадки: а) стінка нерухома; б) стінка рухається в напрямку своєї нормалі зі швидкістю u.
2.158. Якою була початкова температура повітря, якщо при ізобарному нагріванні на 3 К його об'єм зріс на 1 \% від початкового?
2.159. Яку масу повинне мати сферичне тіло радіусом $r=1 \mathrm{~m}$, щоб воно могло плавати в атмосфері Венери? Атмосфера Венери складається з вуглекислого газу CO_{2}, тиск біля поверхні планети $p_{0}=9 \mathrm{M}$ аа, температура $t=527^{\circ} \mathrm{C}$. 2.160. Склянку масою m опускають догори дном у воду, температура якої дорівнює $0^{\circ} \mathrm{C}$. При цьому дно склянки знаходиться на рівні поверхні води. На скільки підніметься дно склянки, якщо воду нагріти до $100^{\circ} \mathrm{C}$ (рис.63)? Площа дна склянки S. Атмосферний тиск p_{0}. Тиском насиченої водяної пари при температурі $0^{\circ} \mathrm{C}$ нехтувати.

Puc. 62

Puc. 63
2.161. Вважаючи повітря газом, який складається з однакових молекул, оцінити швидкість теплового руху молекул газу за нормальних умов.
2.162. У балоні знаходилось $m=0,3$ кг гелію. Через певний час внаслідок витікання гелію і зменшення абсолютної температури на 10 \% тиск у балоні зменшився на 20 \%. Скільки молекул гелію просочилося з балона?
2.163. Певна кількість водню знаходилася в закритій посудині при температурі T_{1} і тиску $p_{1}=400$ Па. Газ нагріли до температури T_{2}, за якої молекули водню практично повністю розпалися на атоми, а тиск газу став $p_{2}=40$ кПа. У скільки разів при цьому зросла середня квадратична швидкість частинок газу?
2.164. Поршень у циліндрі з повітрям прилягає до стінок циліндра нещільно і тому повільно пропускає повітря. Знята за час нагрівання при постійному тиску залежність об'єму від температури зображена на рис. 64. Збільшувалась чи зменшувалась маса повітря в циліндрі?
2.165. Визначити за графіком залежності об’єму певної маси газу від температури (рис. 65) характер зміни тиску газу під час нагрівання.
2.166. На рис. 66 показано циклічний процес, проведений над деякою масою газу. Зобразити цей процес у координатах p, T i V, T.

Puc. 64

Puc. 65

Puc. 66
2.167. Надувну кульку, заповнену гелієм, утримують на нитці. Знайти натяг нитки, якщо маса оболонки кульки $m=2$ г, об'єм $V=3$ л, тиск гелію $p=1,04 \cdot 10^{5}$ Па, температура повітря і гелія $t=27^{\circ} \mathrm{C}$.
2.168. Дві посудини, з'єднані краном, містять однакове число атомів гелію. Середня швидкість атомів гелію в першій посудині v_{1}, в другій $-v_{2}$. Яка встановиться температура газу, якщо відкрити кран?
2.169. На рис. 67 показано графік зміни стану ідеального газу в координатах p, V. Показати цей процес у координатах p, T і V, T. Вказати, на якій з ділянок процесу газ віддає теплоту, а на яких - одержує.
2.170. Газ послідовно переводять із стану 1 зтемпературою T_{1} в стан 2 зтемпературою T_{2}, а потім в стан 3 з температурою T_{3} і повертають в стан 1. Визначити температуру T_{3}, якщо процеси зміни стану відбувалися так, як це показано на рис. 68 , а температури T_{1} і T_{2} відомі.

Puc. 67

Puc. 68
2.171. Закритий з обох кінців горизонтальний циліндр заповнений ідеальним газом при температурі $t=27^{\circ} \mathrm{C}$ і розділений рухомим теплонепроникним поршнем на дві рівні частини довжиною $M=10$ кг кожна. На скільки треба підвищити температуру газу в одній половині циліндра, щоб поршень змістився на відстань $l=20$ см при незмінній температурі газу в другій половині циліндра?
2.172. У ліфті, що рухається з прискоренням $a=5 \frac{\mathrm{~m}}{\mathrm{c}^{2}}$, спрямованим вгору, знаходиться циліндрична посудина, закрита поршнем масою $M=20$ кг і площею S. Під поршнем знаходиться ідеальний газ. Поршень розміщений на відстані $h=22$ см від дна посудини. Визначити, на яку відстань Δh переміститься поршень, якщо ліфт рухатиметься з тим самим за модулем прискоренням, спрямованим униз. Температура газу не змінюється. Тертям поршня об стінки посудини нехтувати.
2.173. У вертикальній циліндричній посудині з гладенькими стінками, під поршнем масою $m=10$ кг і перерізом $S=50$ см 2 знаходиться газ. Під час руху посудини по вертикалі з прискоренням $a=1 \frac{\mathrm{~m}}{\mathrm{c}^{2}}$ висота стовпа газу під поршнем зменшується на $\frac{1}{20}$ порівняно з висотою в нерухомій посудині. Вважаючи температуру газу в посудині незмінною, визначити зовнішній тиск p_{0}. Поршень герметично прилягає до стінок посудини.
2.174. Визначити підіймальну силу повітряної кулі об’ємом $V=100$ м 3, заповненої гарячим повітрям при температурі $t_{1}=147^{\circ} \mathrm{C}$. Куля сполучається з атмосферою. Температура зовнішнього повітря $t_{2}=27^{\circ} \mathrm{C}$, його тиск $p=700$ мм рт. ст.
2.175. Теплоізольована від зовнішнього середовища циліндрична посудина містить рухому перегородку, яка може переміщатися без тертя. В початковий момент перегородка закріплена посередині посудини, причому по один

бік її знаходиться 1 моль якогось ідеального газу, а по другий бік 2 моль того самого газу. Перегородка теплопровідна, тому обидва гази мають однакову температуру. Як зміниться ця температура, якщо звільнити перегородку?
2.176. У вертикальному циліндрі під поршнем знаходиться кисень, маса якого дорівнює m, а молярна маса M. Для підвищення температури кисню на ΔT йому надана кількість теплоти Q. Знайти питому теплоємність кисню в цьому процесі, роботу, виконану газом при розширенні, і збільшення його внутрішньої енергії.
2.177. Чи може теплоємність газу бути від’ємною?
2.178. У вертикальному теплоізольованому циліндрі під поршнем масою $M=10$ кг знаходиться 1 моль ідеального одноатомного газу при температурі $T_{0}=300 К$. Спочатку поршень утримували на висоті $H_{0}=10 \mathrm{~cm}$ від дна циліндра, потім відпустили. Через деякий час поршень зайняв положення на висоті $H=20$ см від дна циліндра. Визначити, яка температура T встановиться в газі. Атмосферний тиск не враховувати.
2.179. Довгий стрижень із закритим, коротким циліндром на кінці обертається з кутовою швидкістю $\omega=20 \frac{\mathrm{paд}}{\mathrm{c}}$ в горизонтальній площині навколо осі, яка проходить через кінець стрижня O (рис.69). У циліндрі, площа перерізу якого $S=100$ cм 2, знаходиться однорідне повітря, розділене поршнем маси $m=490$ г. При обертанні відстань від центра поршня до точки $O \quad r=1,36$ м . Знайти відношення об'ємів $\frac{V_{1}}{V_{2}}$ повітря в циліндрі при обертанні, якщо відомо, що за відсутності обертання об’єми однакові і тиск повітря в них $p=1,1 \cdot 10^{5}$ Па.
2.180. У закритому відкачаному циліндрі підвішено на пружині поршень, який ковзає без тертя, положення рівноваги поршня знаходиться біля дна циліндра. Під поршень вводиться певна кількість повітря так, що поршень піднімається на висоту $h=10$ см при температурі $t_{1}=27^{\circ} \mathrm{C}$. На яку висоту підніметься поршень, якщо кількість повітря під ним збільшиться в 5 разів, а температуру підвищити до $t_{2}=37^{\circ} \mathrm{C}$.
2.181. На рис. 70 зображено три процеси, в кожному з яких температура ідеального газу змінюється на одне й те саме значення. У якому з цих процесів газ одержує найбільшу кількість теплоти?

Puc. 69

Puc. 70

Puc. 71
2.182. З певною кількістю ідеального газу здійснюють коловий процес (цикл), показаний на діаграмі (рис. 71). Вказати, на якій ділянці циклу об'єм газу зростав і на якій - зменшувався.
2.183. Ідеальному одноатомному газу в процесі розширення була надана кількість теплоти, яка в $n=4$ рази перевищує його внутрішню енергію в початковому стані. У скільки разів збільшиться об'єм газу, якщо в процесі розширення він змінювався прямо пропорційно тиску ($V=\alpha p$, де α - додатна стала)?
2.184. У вертикально розміщеній циліндричній посудині з площею перерізу $S=20 \mathrm{~cm}^{2}$ під поршнем масою $M=4$ кг містіться ідеальний одноатомний газ. Відстань між поршнем і дном посудини $h=1$ м. Газу надали кількість теплоти $Q=126$ Дж. У скільки разів зміниться середня квадратична швидкість молекул газу?
2.185. Ідеальний газ може переходити із стану p_{1}, V_{1} в стан p_{2}, V_{2} різними шляхами. Одного разу перехід здійснювався спочатку по ізобарі, а потім по ізохорі. Другий раз перехід здійснювався спочатку по ізохорі, а потім по ізобарі. Під час якого процесу виділилась більша кількість теплоти і на скільки? $p_{1}=4 \cdot 10^{5}$ Па, $V_{1}=3 \mathrm{~m}^{3}, p_{2}=2 \cdot 10^{5} \Pi а, V_{2}=1 \mathrm{~m}^{3}$.
2.186. Моль ідеального газу нагрівається при постійному тиску, а потім при постійному об'ємі переводиться в стан з температурою, рівною початковій температурі $T_{0}=300 \mathrm{~K}$. Виявилося, що в результаті газу передана кількість теплоти $\boldsymbol{Q}=5000$ Дж. У скільки разів змінився об’єм, що його займає газ?
2.187. Ідеальний газ розширюється до подвійного об'єму в процесі 1-2 з лінійною залежністю тиску від об’єму (рис. 72). Потім його ізобарно стискають у процесі $2-3$ до початкового об'єму. Знайти відношення робіт, виконаних газом у процесах розширення і стискання. Відомо, що температури в станах 1 i 2 однакові.
2.188. Вологе повітря, маса якого дорівнює m, займає об'єм V при температурі T і тиску p. Тиск насиченої пари при цій температурі дорівнює $p_{\text {н }}$. Визначити відносну вологість повітря.
2.189. Коли маса водяної пари у повітрі більша - після місяця затяжних дощів з мокрим снігом в листопаді при температурі $t_{1}=0^{\circ} \mathrm{C}$ і відносній вологості $\varphi_{1}=95 \%$ чи після місяця сухої погоди в липні при температурі $t_{2}=35^{\circ} \mathrm{C}$ і вологості $\varphi_{2}=40 \%$? Тиск насиченої пари при $0^{\circ} \mathrm{C}$ $p_{\text {н } 1}=6,1 \cdot 10^{9}$ Па, при $35^{\circ} \mathrm{C} p_{\text {н } 2}=56 \cdot 10^{9}$ Па.
2.190. В посудині об'ємом $V=100$ дм 3 знаходилось сухе повітря. У посудину ввели воду, маса якої $m=60$ г, і герметично закрили її. Чи вся вода перетвориться на пару, якщо посудину нагріти до температури $t=100^{\circ} \mathrm{C}$ і підтримувати цю температуру постійною? Зміною об’єму посудини при нагріванні нехтувати.
2.191. Яку кількість електроенергії слід затратити на приготування 1 кг льоду в домашньому холодильнику, якщо вважати, що він працює за ідеальним циклом? Кімнатна температура дорівнюе $20^{\circ} \mathrm{C}$, фреон охолоджений до температури $-10^{\circ} \mathrm{C}$.

