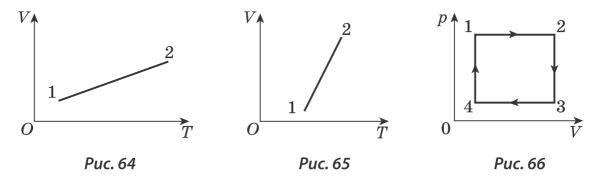

2.156. Газ переведено із стану 1 в стан 2. Залежність його тиску від абсолютної температури показано на *puc. 62.* Збільшився чи зменшився об'єм газу? Масу газу вважати постійною.

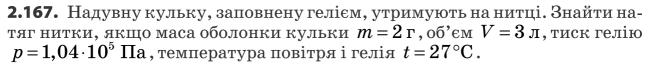
2.157. Молекулярний пучок падає на стінку і відбивається від неї за законом пружного удару. Визначити тиск p, з яким молекулярний пучок тисне на стінку, якщо вектор швидкості молекул \vec{v} утворює кут φ з нормаллю до стінки. Маса кожної молекули m, а їхнє число в одиниці об'єму n. Розглянути випадки: а) стінка нерухома; б) стінка рухається в напрямку своєї нормалі зі швидкістю u.

2.158. Якою була початкова температура повітря, якщо при ізобарному нагріванні на 3 К його об'єм зріс на 1 % від початкового?

2.159. Яку масу повинне мати сферичне тіло радіусом r = 1 м, щоб воно могло плавати в атмосфері Венери? Атмосфера Венери складається з вуглекислого газу CO₂, тиск біля поверхні планети $p_0 = 9$ МПа, температура t = 527 °C. **2.160.** Склянку масою m опускають догори дном у воду, температура якої дорівнює 0 °C. При цьому дно склянки знаходиться на рівні поверхні води. На скільки підніметься дно склянки, якщо воду нагріти до 100 °C (*puc. 63*)? Площа дна склянки S. Атмосферний тиск p_0 . Тиском насиченої водяної пари при температурі 0 °C нехтувати.

2.161. Вважаючи повітря газом, який складається з однакових молекул, оцінити швидкість теплового руху молекул газу за нормальних умов. **2.162.** У балоні знаходилось m = 0,3 кг гелію. Через певний час внаслідок

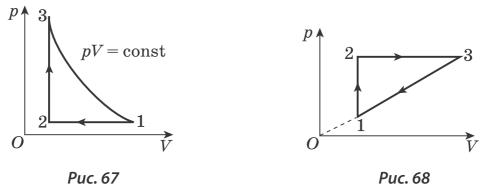

витікання гелію і зменшення абсолютної температури на 10 % тиск у балоні зменшився на 20 %. Скільки молекул гелію просочилося з балона?


2.163. Певна кількість водню знаходилася в закритій посудині при температурі T_1 і тиску $p_1 = 400 \,\Pi a$. Газ нагріли до температури T_2 , за якої молекули водню практично повністю розпалися на атоми, а тиск газу став $p_2 = 40 \,\kappa \Pi a$. У скільки разів при цьому зросла середня квадратична швидкість частинок газу?

2.164. Поршень у циліндрі з повітрям прилягає до стінок циліндра нещільно і тому повільно пропускає повітря. Знята за час нагрівання при постійному тиску залежність об'єму від температури зображена на *puc. 64*. Збільшувалась чи зменшувалась маса повітря в циліндрі?

2.165. Визначити за графіком залежності об'єму певної маси газу від температури (*puc. 65*) характер зміни тиску газу під час нагрівання.

2.166. На *puc. 66* показано циклічний процес, проведений над деякою масою газу. Зобразити цей процес у координатах *p*, *T* і *V*, *T*.



2.168. Дві посудини, з'єднані краном, містять однакове число атомів гелію. Середня швидкість атомів гелію в першій посудині v_1 , в другій — v_2 . Яка встановиться температура газу, якщо відкрити кран?

2.169. На *puc. 67* показано графік зміни стану ідеального газу в координатах *p*, *V*. Показати цей процес у координатах *p*, *T* і *V*, *T*. Вказати, на якій з ділянок процесу газ віддає теплоту, а на яких — одержує.

2.170. Газ послідовно переводять із стану 1 з температурою T_1 в стан 2 з температурою T_2 , а потім в стан 3 з температурою T_3 і повертають в стан 1. Визначити температуру T_3 , якщо процеси зміни стану відбувалися так, як це показано на *puc. 68*, а температури T_1 і T_2 відомі.

2.171. Закритий з обох кінців горизонтальний циліндр заповнений ідеальним газом при температурі $t = 27 \,^{\circ}\text{C}$ і розділений рухомим теплонепроникним поршнем на дві рівні частини довжиною $M = 10 \,\text{кг}$ кожна. На скільки треба підвищити температуру газу в одній половині циліндра, щоб поршень змістився на відстань $l = 20 \,\text{см}$ при незмінній температурі газу в другій половині циліндра?

2.172. У ліфті, що рухається з прискоренням $a = 5 \frac{M}{c^2}$, спрямованим вгору, знаходиться циліндрична посудина, закрита поршнем масою M = 20 кг і площею S. Під поршнем знаходиться ідеальний газ. Поршень розміщений на відстані h = 22 см від дна посудини. Визначити, на яку відстань Δh переміститься поршень, якщо ліфт рухатиметься з тим самим за модулем прискоренням, спрямованим униз. Температура газу не змінюється. Тертям поршня об стінки посудини нехтувати.

2.173. У вертикальній циліндричній посудині з гладенькими стінками, під поршнем масою m = 10 кг і перерізом $S = 50 \text{ см}^2$ знаходиться газ. Під час

руху посудини по вертикалі з прискоренням $a = 1 \frac{M}{c^2}$ висота стовпа газу під поршнем зменшується на $\frac{1}{20}$ порівняно з висотою в нерухомій посудині. Вважаючи температуру газу в посудині незмінною, визначити зовнішній тиск p_0 . Поршень герметично прилягає до стінок посудини.

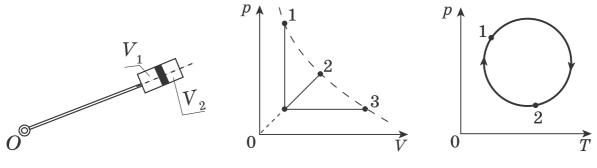
2.174. Визначити підіймальну силу повітряної кулі об'ємом $V = 100 \text{ m}^3$, заповненої гарячим повітрям при температурі $t_1 = 147 \text{ °C}$. Куля сполучається з атмосферою. Температура зовнішнього повітря $t_2 = 27 \text{ °C}$, його тиск p = 700 мм рт. ст.

2.175. Теплоізольована від зовнішнього середовища циліндрична посудина містить рухому перегородку, яка може переміщатися без тертя. В початковий момент перегородка закріплена посередині посудини, причому по один

бік її знаходиться 1 моль якогось ідеального газу, а по другий бік 2 моль того самого газу. Перегородка теплопровідна, тому обидва гази мають однакову температуру. Як зміниться ця температура, якщо звільнити перегородку? **2.176.** У вертикальному циліндрі під поршнем знаходиться кисень, маса якого дорівнює m, а молярна маса M. Для підвищення температури кисню на ΔT йому надана кількість теплоти Q. Знайти питому теплоємність кисню в цьому процесі, роботу, виконану газом при розширенні, і збільшення його внутрішньої енергії.

2.177. Чи може теплоємність газу бути від'ємною?

2.178. У вертикальному теплоізольованому циліндрі під поршнем масою $M = 10 \ \mathrm{kr}$ знаходиться 1 моль ідеального одноатомного газу при температурі $T_0 = 300 \ \mathrm{K}$. Спочатку поршень утримували на висоті $H_0 = 10 \ \mathrm{cm}$ від дна циліндра, потім відпустили. Через деякий час поршень зайняв положення на висоті $H = 20 \ \mathrm{cm}$ від дна циліндра. Визначити, яка температура T встановиться в газі. Атмосферний тиск не враховувати.


2.179. Довгий стрижень із закритим, коротким циліндром на кінці обер-

тається з кутовою швидкістю $\omega = 20 \frac{\text{рад}}{\text{с}}$ в горизонтальній площині навколо осі, яка проходить через кінець стрижня O (*puc. 69*). У циліндрі, площа перерізу якого $S = 100 \text{ см}^2$, знаходиться однорідне повітря, розділене поршнем маси m = 490 г. При обертанні відстань від центра поршня до точ-

ки $O \quad r = 1,36$ м. Знайти відношення об'ємів $\frac{V_1}{V_2}$ повітря в циліндрі при обертанні, якщо відомо, що за відсутності обертання об'єми однакові і тиск повітря в них $p = 1.1 \cdot 10^5$ Па.

2.180. У закритому відкачаному циліндрі підвішено на пружині поршень, який ковзає без тертя, положення рівноваги поршня знаходиться біля дна циліндра. Під поршень вводиться певна кількість повітря так, що поршень піднімається на висоту h = 10 см при температурі $t_1 = 27$ °C. На яку висоту підніметься поршень, якщо кількість повітря під ним збільшиться в 5 разів, а температуру підвищити до $t_2 = 37$ °C.

2.181. На *puc.* 70 зображено три процеси, в кожному з яких температура ідеального газу змінюється на одне й те саме значення. У якому з цих процесів газ одержує найбільшу кількість теплоти?

Puc. 69

Рис. 70

2.182. З певною кількістю ідеального газу здійснюють коловий процес (цикл), показаний на діаграмі (*puc. 71*). Вказати, на якій ділянці циклу об'єм газу зростав і на якій — зменшувався.

2.183. Ідеальному одноатомному газу в процесі розширення була надана кількість теплоти, яка в n = 4 рази перевищує його внутрішню енергію в початковому стані. У скільки разів збільшиться об'єм газу, якщо в процесі розширення він змінювався прямо пропорційно тиску ($V = \alpha p$, де α — додатна стала)?

2.184. У вертикально розміщеній циліндричній посудині з площею перерізу $S = 20 \text{ см}^2$ під поршнем масою M = 4 кг містіться ідеальний одноатомний газ. Відстань між поршнем і дном посудини h = 1 м. Газу надали кількість теплоти Q = 126 Дж. У скільки разів зміниться середня квадратична швидкість молекул газу?

2.185. Ідеальний газ може переходити із стану p_1 , V_1 в стан p_2 , V_2 різними шляхами. Одного разу перехід здійснювався спочатку по ізобарі, а потім по ізохорі. Другий раз перехід здійснювався спочатку по ізохорі, а потім по ізобарі. Під час якого процесу виділилась більша кількість теплоти і на скільки? $p_1 = 4 \cdot 10^5 \, \Pi a$, $V_1 = 3 \, \mathrm{m}^3$, $p_2 = 2 \cdot 10^5 \, \Pi a$, $V_2 = 1 \, \mathrm{m}^3$.

2.186. Моль ідеального газу нагрівається при постійному тиску, а потім при постійному об'ємі переводиться в стан з температурою, рівною початковій температурі $T_0 = 300$ К. Виявилося, що в результаті газу передана кількість теплоти $Q = 5\,000$ Дж. У скільки разів змінився об'єм, що його займає газ?

2.187. Ідеальний газ розширюється до подвійного об'єму в процесі 1–2 з лінійною залежністю тиску від об'єму (*puc. 72*). Потім його ізобарно стискають у процесі 2–3 до початкового об'єму. Знайти відношення робіт, виконаних газом у процесах розширення і стискання. Відомо, що температури в станах 1 і 2 однакові.

2.188. Вологе повітря, маса якого дорівнює m, займає об'єм V при температурі T і тиску p. Тиск насиченої пари при цій температурі дорівнює $p_{\rm H}$. Визначити відносну вологість повітря.

2.189. Коли маса водяної пари у повітрі більша — після місяця затяжних дощів з мокрим снігом в листопаді при температурі $t_1 = 0$ °C і відносній вологості $\phi_1 = 95$ % чи після місяця сухої погоди в липні при температурі $t_2 = 35$ °C і вологості $\phi_2 = 40$ %? Тиск насиченої пари при 0 °C $p_{_{\rm H1}} = 6,1\cdot 10^9$ Па, при 35 °C $p_{_{\rm H2}} = 56\cdot 10^9$ Па.

2.190. В посудині об'ємом $V = 100 \text{ дм}^3$ знаходилось сухе повітря. У посудину ввели воду, маса якої m = 60 г, і герметично закрили її. Чи вся вода перетвориться на пару, якщо посудину нагріти до температури t = 100 °C і підтримувати цю температуру постійною? Зміною об'єму посудини при нагріванні нехтувати.

2.191. Яку кількість електроенергії слід затратити на приготування 1 кг льоду в домашньому холодильнику, якщо вважати, що він працює за ідеальним циклом? Кімнатна температура дорівнює 20 °C, фреон охолоджений до температури –10 °C.