2.1. З Харкова в сторону Києва з інтервалом в $\Delta t=10$ хв вийшли два електропотяги зі швидкістю $v=54 \frac{\text { км }}{\text { год }}$. З якою швидкістю u рухався зустрічний потяг, якщо він зустрів ці потяги через $\tau=6$ хв один після одного?
2.2. Два потяги рухаються назустріч один одному зі швидкостями $v_{1}=72 \frac{\text { км }}{\text { год }}$ i $v_{2}=54 \frac{\text { км }}{\text { год }}$. Пасажир у вагоні першого потяга помічає, що другий потяг проходить повз нього за $t=14$ с. Яка довжина другого потяга? За який час другий потяг пройшов би повз пасажира, коли б потяги рухалися в одному напрямі?
2.3. Дві електрички, довжиною $L=200$ м кожна, рухаються назустріч одна одній. Швидкість однієї з них менша, ніж другої, і дорівнює $v_{1}=40 \frac{\text { км }}{\text { год }}$. Відстань між місцем зустрічі перших вагонів і місцем розходження останніх вагонів $d=40$ м. Визначити швидкість другої електрички.
2.4. Два підводних човни пливуть у кільватер на відстані l один за одним з однаковою швидкістю v. Випущений із заднього човна сигнал гідролокатора досягає переднього човна, відбивається і повертається назад. Визначити час між моментами відправлення сигналу і реєстрації відбитого сигналу. Швидкість звуку у воді u.
2.5. По шосейній дорозі, яка йде паралельно залізниці, рухається велосипедист зі швидкістю $v=8 \frac{\text { км }}{\text { год }}$. В певний момент часу його доганяє потяг довжиною $l=120 \mathrm{~m}$, що рухається рівномірно, й обганяє його за $t=6$ с. Яка швидкість потяга?
2.6. Людину, яка йде вздовж трамвайної лінії, кожні $t_{1}=7$ хв обганяє трамвай, а кожні $t_{2}=5$ хв трамвай проходить назустріч. Як часто ходять трамваї? Відстань між траваями однакова.
2.7. Між двома теплоходами, що пливуть назустріч один одному зі швидкостями v_{1} і v_{2} у відкритому морі, плаває з постійною швидкістю v дельфін. Зустрівши теплохід, дельфін розвертається і пливе назустріч другому теплоходові. Яку відстань він пропливе до моменту зустрічі, якщо початкова відстань між ними була s ?
2.8. Два хлопчики перекидаються м'ячем, рухаючись одночасно назустpiч один одному. Визначити шлях, який пролетів м'яч за час, протягом якого відстань між хлопчиками скоротилася від l_{1} до l_{2}. Швидкість першого хлопчика v_{1}, швидкість другого $-v_{2}$, швидкість м'яча $-v_{3}$. Часом перебування м'яча в руках можна знехтувати. Вважати політ м'яча горизонтальним.
2.9. Рухаючись по ескалатору довжиною L з відносною швидкістю v, людина проходить його за $t_{1}=60 \mathrm{c}$, а рухаючись у протилежний бік з тією самою відносною швидкістю - за $t_{2}=120$ с. Визначити швидкість людини v і швидкість u ескалатора, довжина якого $L=120$ м.
2.10. Потяг A має довжину l_{1}, потяг B довжину l_{2}. Коли потяги рухаються в одну сторону, то час, що минає від моменту, коли локомотив потяга A наздоганяє останній вагон потяга B, до моменту, коли останній вагон потяга A минає локомотив потяга B, дорівнює t_{1}. Коли потяги рухаються з такими ж швидкостями назустріч один одному, то час розходження потягів дорівнює t_{2}. Визначити швидкості v_{1} і v_{2} обох потягів.
2.11. Стінки вагона потяга, що рухався зі швидкістю $v=72 \frac{\text { км }}{\text { год }}$, були пробиті кулею, яка летіла перпендикулярно до напрямку руху вагона. Один отвір у стінках вагона зміщений відносно іншого на $s=6 \mathrm{~cm}$. Відстань між пробитими кулею стінками вагона $d=2,7$ м. Якою була швидкість польоту кулі? Вважати, що стінки вагона настільки тонкі, що траєкторія руху кулі та її швидкість не змінилась після того, як вона пробила першу стінку.
2.12. Потяг першу половину шляху йшов зі швидкістю, в 1,5 рази більшою, ніж другу половину. Середня швидкість руху на всьому шляху дорівнює v. Які швидкості потяга на кожній половині шляху?
2.13. Велосипедист їде по пересіченій місцевості. Коли дорога йде вгору, його швидкість становить $v_{1}=5 \frac{\text { км }}{\text { год }}$, згори $-v_{2}=20 \frac{\text { км }}{\text { год }}$. Яка його середня швидкість, якщо загальний шлях, пройдений при підйомі, такий самий, як і при спуску?
2.14. Ковзаняр, що пробіг дистанцію $s=500 \mathrm{~m}$, перші $s_{1}=100 \mathrm{~m}$ пробіг зі швидкістю $v_{1}=10 \frac{\mathrm{~m}}{\mathrm{c}}$, наступні $s_{2}=300 \mathrm{~m}$ - зі швидкістю $v_{2}=11 \frac{\mathrm{~m}}{\mathrm{c}}$,

а останні $s_{3}=100 \mathrm{~m}-$ зі швидкістю $v_{3}=13 \frac{\mathrm{~m}}{\mathrm{c}}$. 3 якою середньою швидкістю ковзаняр пробіг всю дистанцію?
2.15. Два потяги пройшли шлях від станції A до станції B, причому один з них першу половину шляху пройшов зі швидкістю $v_{1}=80 \frac{\text { км }}{\text { год }}$, а другу половину шляху зі швидкістю $v_{2}=40 \frac{\text { км }}{\text { год }}$. Другий потяг першу половину часу пройшов зі швидкістю $v_{1}=80 \frac{\text { км }}{\text { год }}$, а другу половину часу — $v_{2}=40 \frac{\text { км }}{\text { год }}$. Який з них затратив більше часу і чому дорівнюють їхні середні швидкості?
2.16. Крижина плаває на воді. Об’єм її надводної частини $V_{\text {н }}=20$ м 3. Який об’єм всієї крижини?
2.17. Сила тиску кулі на дно басейна при заповненні його водою зменшилася в два рази, коли рівень води досяг центра кулі (рис. 24). Визначити густину матеріалу, з якого виготовлена куля.

Puc. 24

Puc. 25
2.18. До шальок терезів підвішені дві гирі однакової маси - фарфорова і залізна. Чи порушиться рівновага терезів, якщо гирі опустити у посудину з водою? Відповідь обгрунтувати.
2.19. Баржа має форму коробки розміром $10 \times 4 \times 2$ м. Її маса з вантажем $M=50$ т. Чи можна навантажити на баржу ще пару контейнерів масою $m=25$ т кожен? Умови стійкості виконуються.
2.20. З плавучої платформи піднімають на тросі батискаф об’ємом $V=4$ м 3. Площа горизонтального перерізу платформи на рівні поверхні води $S=100$ м² 2. На скільки зануриться платформа при повному виході батискафа з води?
2.21. Зважування тіла у повітрі дало значення P. Зважування того самого тіла в рідині густиною ρ_{0} дало значення P_{1}. Чому дорівнює густина речовини, з якої виготовлено тіло? При зважуванні в рідині тіло повністю занурено в неї. Густиною повітря знехтувати.
2.22. Зливок сплаву двох металів з густинами ρ_{1} і ρ_{2} важить у повітрі P_{1}, а у воді - P_{2}. Знайти масу кожного з металів у зливку.
2.23. В металевих деталях при відливанні часто утворюються раковини - ділянки, заповнені повітрям. Ззовні їх не видно, але вони можуть істотно впливати на міцність деталі. Як перевірити, чи є такі раковини в деталі, якщо у вас є деталь з того самого металу іншої форми і об’єму, без раковин, мензурка з водою, в яку може поміститися будь-яка з деталей, і терези?
2.24. Два однакових циліндри з поршнями з'єднані трубкою з краном. В циліндрах знаходиться вода. Зверху на поршні поставили однакові склянки з однаковою кількістю води. Потім у склянки опустили тіла, що не тонуть. Маса m_{1} першого тіла більша за масу m_{2} другого тіла (рис. 25). На яку висоту h один відносно одного змістяться поршні, якщо відкрити кран і система прийде в стан рівноваги? Площа кожного поршня S. Тертям знехтувати.
2.25. Аеростат, заповнений газом з густиною ρ_{1}, має підіймальну силу F_{1}. Знайти підіймальну силу, якщо заповнити аеростат газом з густиною ρ_{2}. Вага оболонки дорівнює P.
2.26. Дерев'яний брусок квадратного перерізу з ребром a довжиною l і масою m опущено у воду вертикально. Однак він відразу ж переходить в горизонтальне положення. Пояснити це.
2.27. Корковий рятувальний круг має масу $m=3,2$ кг. Визначити підіймальну силу $F_{\text {п }}$ цього круга в морі.
2.28. За допомогою гідравлічного преса з відношенням площ поршнів $\frac{S_{1}}{S_{2}}=\frac{1}{50}$ і з ККД $\eta=75 \%$ намагаються протягом $t=0,5$ хв спресувати вантаж масою $m=8 \cdot 10^{4}$ кг так, щоб найбільша сила тиску вантажу на верхню площадку преса досягла значення $F=10^{6} \mathrm{H}$. При цьому вантаж стискається на $\Delta h=30$ см. Визначити виконану пресом роботу, вважаючи, що деформація вантажу по вертикалі пропорційна стискаючій силі. Визначити середню і максимальну потужності преса. Визначити число ходів малого поршня, якщо відомо, що за один хід малий поршень опускається на $H=10$ см.
2.29. Однорідна балка довжиною $L=6$ м однією частиною ($l=1$ м) лежить на горизонтальній платформі, решта балки звішується з платформи (рис.26). До кінця звисаючої частини прикладена вертикальна сила F. Балка утримується в горизонтальному положенні, якщо значення сили F лежить у межах від мінімального значення $F_{\min }$ до максимального $F_{\max }$. Знайти відношення $\frac{F_{\max }}{F_{\min }}$, якщо товщина балки значно менша за її довжину.
2.30. Упори-ролики А і Б дають можливість «закріпити» балку горизонтально (рис. 27). Тиснути на балку можна з силою, не більшою від F_{0}, інакше вона зруйнується. Який найбільший вантаж можна підвісити до кінця

балки? Як її слід розмістити? Маса балки m, довжина L, відстань між роликами по горизонталі l.

Puc. 26

Puc. 27

Puc. 28
2.31. З якою силою людина повинна тягнути вірьовку, щоб утримати платформу, на якій вона стоїть (рис. 28), якщо її маса $M=60$ кг, а маса платформи $m=30$ кг? З якою силою тисне людина на платформу? Яку максимальну масу повинна мати платформа, щоб людина не змогла її утримати?
2.32. Автомобіль з двигуном потужністю $P_{1}=30$ кВт при перевезенні вантажу розвиває швидкість $v_{1}=15 \frac{\mathrm{~m}}{\mathrm{c}}$. Автомобіль з двигуном потужністю $P_{2}=20$ кВт при перевезенні вантажу за тих самих умов розвиває швидкість $v_{2}=10 \frac{\mathrm{~m}}{\mathrm{c}}$. Якою буде швідкість у випадку, коли обидва автомобілі, з'єднані тросом, будуть перевозити цей вантаж?
2.33. Аквалангіст на певній глибині у воді звільнив взяті з собою при зануренні дерев'яну й коркову кульки, і вони випливли на поверхню. Об'єми кульок однакові, густина дерева більша за густину корка. Чи однакова була виконана робота з підняття кульок на поверхню води?

