- **2.1.** З Харкова в сторону Києва з інтервалом в $\Delta t = 10$ хв вийшли два електропотяги зі швидкістю $v = 54 \, \frac{\mathrm{KM}}{\mathrm{год}}$. З якою швидкістю u рухався зустрічний потяг, якщо він зустрів ці потяги через $\tau = 6$ хв один після одного? **2.2.** Два потяги рухаються назустріч один одному зі швидкостями
- $v_1 = 72 \frac{\mathrm{км}}{\mathrm{год}}$ і $v_2 = 54 \frac{\mathrm{км}}{\mathrm{год}}$. Пасажир у вагоні першого потяга помічає, що другий потяг проходить повз нього за $t = 14 \, \mathrm{c}$. Яка довжина другого потяга? За який час другий потяг пройшов би повз пасажира, коли б потяги рухалися в одному напрямі?
- **2.3.** Дві електрички, довжиною L=200 м кожна, рухаються назустріч одна одній. Швидкість однієї з них менша, ніж другої, і дорівнює $v_1=40\frac{\mathrm{кm}}{\mathrm{год}}$. Відстань між місцем зустрічі перших вагонів і місцем розходження останніх вагонів d=40 м. Визначити швидкість другої електрички.
- **2.4.** Два підводних човни пливуть у кільватер на відстані l один за одним з однаковою швидкістю v. Випущений із заднього човна сигнал гідролокатора досягає переднього човна, відбивається і повертається назад. Визначити час між моментами відправлення сигналу і реєстрації відбитого сигналу. Швидкість звуку у воді u.
- **2.5.** По шосейній дорозі, яка йде паралельно залізниці, рухається велосипедист зі швидкістю $v=8\frac{\mathrm{кm}}{\mathrm{год}}$. В певний момент часу його доганяє потяг довжиною $l=120\,\mathrm{m}$, що рухається рівномірно, й обганяє його за $t=6\,\mathrm{c}$. Яка швидкість потяга?

- **2.6.** Людину, яка йде вздовж трамвайної лінії, кожні $t_1 = 7$ хв обганяє трамвай, а кожні $t_2 = 5$ хв трамвай проходить назустріч. Як часто ходять трамваї? Відстань між траваями однакова.
- **2.7.** Між двома теплоходами, що пливуть назустріч один одному зі швидкостями v_1 і v_2 у відкритому морі, плаває з постійною швидкістю v дельфін. Зустрівши теплохід, дельфін розвертається і пливе назустріч другому теплоходові. Яку відстань він пропливе до моменту зустрічі, якщо початкова відстань між ними була s?
- **2.8.** Два хлопчики перекидаються м'ячем, рухаючись одночасно назустріч один одному. Визначити шлях, який пролетів м'яч за час, протягом якого відстань між хлопчиками скоротилася від l_1 до l_2 . Швидкість першого хлопчика v_1 , швидкість другого v_2 , швидкість м'яча v_3 . Часом перебування м'яча в руках можна знехтувати. Вважати політ м'яча горизонтальним.
- **2.9.** Рухаючись по ескалатору довжиною L з відносною швидкістю v, людина проходить його за $t_1 = 60\,\mathrm{c}$, а рухаючись у протилежний бік з тією самою відносною швидкістю за $t_2 = 120\,\mathrm{c}$. Визначити швидкість людини v і швидкість u ескалатора, довжина якого u = 120 м.
- **2.10.** Потяг A має довжину l_1 , потяг B довжину l_2 . Коли потяги рухаються в одну сторону, то час, що минає від моменту, коли локомотив потяга A наздоганяє останній вагон потяга B, до моменту, коли останній вагон потяга A минає локомотив потяга B, дорівнює t_1 . Коли потяги рухаються з такими ж швидкостями назустріч один одному, то час розходження потягів дорівнює t_2 . Визначити швидкості v_1 і v_2 обох потягів.
- **2.11.** Стінки вагона потяга, що рухався зі швидкістю $v = 72 \frac{\text{км}}{\text{год}}$, були пробиті кулею, яка летіла перпендикулярно до напрямку руху вагона. Один отвір у стінках вагона зміщений відносно іншого на s = 6 см. Відстань між пробитими кулею стінками вагона d = 2,7 м. Якою була швидкість польоту кулі? Вважати, що стінки вагона настільки тонкі, що траєкторія руху кулі та її швидкість не змінилась після того, як вона пробила першу стінку.
- **2.12.** Потяг першу половину шляху йшов зі швидкістю, в 1,5 рази більшою, ніж другу половину. Середня швидкість руху на всьому шляху дорівнює v. Які швидкості потяга на кожній половині шляху?
- **2.13.** Велосипедист їде по пересіченій місцевості. Коли дорога йде вгору, його швидкість становить $v_1 = 5 \frac{\mathrm{KM}}{\mathrm{год}}$, згори $v_2 = 20 \frac{\mathrm{KM}}{\mathrm{год}}$. Яка його середня швидкість, якщо загальний шлях, пройдений при підйомі, такий самий, як і при спуску?
- **2.14.** Ковзаняр, що пробіг дистанцію $s=500\,\mathrm{m}$, перші $s_1=100\,\mathrm{m}$ пробіг зі швидкістю $v_1=10\,\frac{\mathrm{m}}{c}$, наступні $s_2=300\,\mathrm{m}$ зі швидкістю $v_2=11\,\frac{\mathrm{m}}{c}$,

а останні $s_3 = 100 \,\mathrm{m}$ — зі швидкістю $v_3 = 13 \, \frac{\mathrm{m}}{\mathrm{c}}$. З якою середньою швидкістю ковзаняр пробіг всю дистанцію?

2.15. Два потяги пройшли шлях від станції A до станції B, причому один з них першу половину шляху пройшов зі швидкістю $v_1 = 80 \, \frac{\rm KM}{\rm год}$, а другу половину шляху зі швидкістю $v_2 = 40 \, \frac{\rm KM}{\rm год}$. Другий потяг першу поло-

вину часу пройшов зі швидкістю $v_1 = 80 \frac{\text{км}}{\text{год}}$, а другу половину часу — $v_2 = 40 \frac{\text{км}}{\text{год}}$. Який з них затратив більше часу і чому дорівнюють їхні середні швидкості?

- **2.16.** Крижина плаває на воді. Об'єм її надводної частини $V_{_{\mathrm{H}}}$ = $20~\mathrm{m}^3$. Який об'єм всієї крижини?
- 2.17. Сила тиску кулі на дно басейна при заповненні його водою зменшилася в два рази, коли рівень води досяг центра кулі (*puc. 24*). Визначити густину матеріалу, з якого виготовлена куля.

Puc. 25

- **2.18.** До шальок терезів підвішені дві гирі однакової маси фарфорова і залізна. Чи порушиться рівновага терезів, якщо гирі опустити у посудину з водою? Відповідь обґрунтувати.
- **2.19.** Баржа має форму коробки розміром $10 \times 4 \times 2$ м. Її маса з вантажем $M = 50 \,\mathrm{T}$. Чи можна навантажити на баржу ще пару контейнерів масою m = 25 т кожен? Умови стійкості виконуються.
- 2.20. З плавучої платформи піднімають на тросі батискаф об'ємом $V = 4 \text{ м}^3$. Площа горизонтального перерізу платформи на рівні поверхні води $S = 100 \,\mathrm{m}^2$. На скільки зануриться платформа при повному виході батискафа з води?
- **2.21.** Зважування тіла у повітрі дало значення P. Зважування того самого тіла в рідині густиною ρ_0 дало значення P_1 . Чому дорівнює густина речовини, з якої виготовлено тіло? При зважуванні в рідині тіло повністю занурено в неї. Густиною повітря знехтувати.

- **2.22.** Зливок сплаву двох металів з густинами ρ_1 і ρ_2 важить у повітрі P_1 , а у воді P_2 . Знайти масу кожного з металів у зливку.
- **2.23.** В металевих деталях при відливанні часто утворюються раковини ділянки, заповнені повітрям. Ззовні їх не видно, але вони можуть істотно впливати на міцність деталі. Як перевірити, чи є такі раковини в деталі, якщо у вас є деталь з того самого металу іншої форми і об'єму, без раковин, мензурка з водою, в яку може поміститися будь-яка з деталей, і терези?
- **2.24.** Два однакових циліндри з поршнями з'єднані трубкою з краном. В циліндрах знаходиться вода. Зверху на поршні поставили однакові склянки з однаковою кількістю води. Потім у склянки опустили тіла, що не тонуть. Маса m_1 першого тіла більша за масу m_2 другого тіла (puc. 25). На яку висоту h один відносно одного змістяться поршні, якщо відкрити кран і система прийде в стан рівноваги? Площа кожного поршня S. Тертям знехтувати.
- **2.25.** Аеростат, заповнений газом з густиною ρ_1 , має підіймальну силу F_1 . Знайти підіймальну силу, якщо заповнити аеростат газом з густиною ρ_2 . Вага оболонки дорівнює P.
- **2.26.** Дерев'яний брусок квадратного перерізу з ребром a довжиною l і масою m опущено у воду вертикально. Однак він відразу ж переходить в горизонтальне положення. Пояснити це.
- **2.27.** Корковий рятувальний круг має масу m=3,2 кг. Визначити підіймальну силу $F_{_{\!\!\Pi}}$ цього круга в морі.
- **2.28.** За допомогою гідравлічного преса з відношенням площ поршнів $\frac{S_1}{S_2} = \frac{1}{50}$ і з ККД $\eta = 75$ % намагаються протягом t = 0.5 хв спресувати ван-
- таж масою $m=8\cdot 10^4$ кг так, щоб найбільша сила тиску вантажу на верхню площадку преса досягла значення $F=10^6$ Н. При цьому вантаж стискається на $\Delta h=30\,\mathrm{cm}$. Визначити виконану пресом роботу, вважаючи, що деформація вантажу по вертикалі пропорційна стискаючій силі. Визначити середню і максимальну потужності преса. Визначити число ходів малого поршня, якщо відомо, що за один хід малий поршень опускається на $H=10\,\mathrm{cm}$.
- **2.29.** Однорідна балка довжиною L=6 м однією частиною (l=1 м) лежить на горизонтальній платформі, решта балки звішується з платформи $(puc.\,26)$. До кінця звисаючої частини прикладена вертикальна сила F. Балка утримується в горизонтальному положенні, якщо значення сили F лежить у межах від мінімального значення F_{\min} до максимального F_{\max} . Знайти відно-
- шення $\frac{F_{\mathrm{max}}}{F_{\mathrm{min}}}$, якщо товщина балки значно менша за її довжину.
- **2.30.** Упори-ролики A і Б дають можливість «закріпити» балку горизонтально (puc. 27). Тиснути на балку можна з силою, не більшою від F_0 , інакше вона зруйнується. Який найбільший вантаж можна підвісити до кінця

балки? Як її слід розмістити? Маса балки m, довжина L, відстань між роликами по горизонталі l.

- **2.31.** З якою силою людина повинна тягнути вірьовку, щоб утримати платформу, на якій вона стоїть ($puc.\ 28$), якщо її маса $M=60\ \mathrm{kr}$, а маса платформи $m=30\ \mathrm{kr}$? З якою силою тисне людина на платформу? Яку максимальну масу повинна мати платформа, щоб людина не змогла її утримати?
- **2.32.** Автомобіль з двигуном потужністю $P_1 = 30 \, \mathrm{kBT}$ при перевезенні вантажу розвиває швидкість $v_1 = 15 \, \frac{\mathrm{M}}{\mathrm{c}}$. Автомобіль з двигуном потужністю $P_2 = 20 \, \mathrm{kBT}$ при перевезенні вантажу за тих самих умов розвиває швидкість $v_2 = 10 \, \frac{\mathrm{M}}{\mathrm{c}}$. Якою буде швідкість у випадку, коли обидва автомобілі, з'єднані тросом, будуть перевозити цей вантаж?
- **2.33.** Аквалангіст на певній глибині у воді звільнив взяті з собою при зануренні дерев'яну й коркову кульки, і вони випливли на поверхню. Об'єми кульок однакові, густина дерева більша за густину корка. Чи однакова була виконана робота з підняття кульок на поверхню води?